Inorganic Thin-film Sensor Membranes with PLD-prepared Chalcogenide Glasses: Challenges and Implementation

نویسندگان

  • Joachim P. Kloock
  • Youlia G. Mourzina
  • Yuri Ermolenko
  • Theodor Doll
  • Jürgen Schubert
  • Michael J. Schöning
چکیده

Chalcogenide glasses offer an excellent “challenge” for their use and implementation in sensor arrays due to their good sensor-specific advantages in comparison to their crystalline counterparts. This paper will give an introduction on the preparation of chalcogenide glasses in the thin-film state. First, single microsensors have been prepared with the methods of semiconductor technology. In a next step, three microsensors are implemented onto one single silicon substrate to an “one chip” sensor array. Different ionselective chalcogenide glass membranes (PbSAgIAs2S3, CdSAgIAs2S3, CuAgAsSeTe and TlAgAsIS) were prepared by means of the pulsed laser deposition (PLD) process. The different sensor membranes and structures have been physically characterized by means of Rutherford backscattering spectrometry, scanning electron microscopy and video microscopy. The electrochemical behavior has been investigated by potentiometric measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor

During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...

متن کامل

Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. ...

متن کامل

A First Step Towards a Microfabricated Thin-Film Sensor Array on the Basis of Chalcogenide Glass Materials

A first step towards a microfabricated potentiometric thin-film sensor array for the simultaneous detection of Pb, Cd and Cu has been realized. The sensitive layers used are on the basis of chalcogenide glass materials. These thin-film chalcogenide glass materials that consist of mixtures of Pb-Ag-As-I-S, Cd-Ag-As-I-S or Cu-Ag-As-Se have been prepared by pulsed laser deposition technique. The d...

متن کامل

Optical properties of spin-coated Er-doped Ga1As39S60 Chalcogenide thin films

Spin-coating of Chalcogenide glasses is a cost-effective and flexible method to produce thin films applicable in photonics. In this paper Er was doped into Ga1As39S60 glass by melt quenching technique and solutions for spin coating were prepared from glass powders dissolved in Propylamine and Ethylendiamine. Substrates used were microscopic slides (refractive index of about 1.51). Applied layer...

متن کامل

Microstructure, mechanical and thermal properties of chalcogenide glasses and glass-ceramics based on Se-As-Ge system nucleated by Sn

In particular, chalcogenide glasses and glass-ceramics are new materials that exhibit good transparency in infrared region (0.8-12µm). We can overcome the main weakness of these glasses by improving the hardness through controlling crystallization. In this paper, we report results of a study on chalcogenide glasses in the ternary system of As-Se-Ge with nominal composition of Snx (Se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2004